LinqProtocol (LNQ) Token & Staking Economy: The Building Blocks for a Truly Decentralized Internet LinqAI Team (V0.1, Dated: July 22, 2025) LinqProtocol is a decentralized cloud computing marketplace powered by its native token, LNQ. By tightly integrating LNQ into marketplace operations, LinqProtocol balances resource utilization and incentivizes participation thereby addressing common pitfalls of previous decentralized compute platforms. LNQ is an ERC-20 token with a maximum supply of 1 billion, around ~30% of which is circulating at the time of writing, and approximately ~14% burned to date. LNQ serves multiple functions, supporting network security, trust, and growth. **Disclaimer**: This document is a literaper and represents a work in progress. It does not claim to be final; any future adjustments will be clearly noted in the header. Upon completion, it will be formally titled "Whitepaper." ## **Abstract** This litepaper presents the tokenomics of LNQ, the native utility token powering LinqProtocol - a semi-verifiable decentralized compute marketplace designed to align incentives among requestors, providers, stakers, and governance participants in a trust-minimized environment. Amidst burgeoning DePIN sector, valued at over \$50 billion in market capitalization as of 2024 and projected to reach \$3.5 trillion by 2028[1], existing solutions face persistent challenges including verification overheads, token volatility, and incentive misalignments that hinder enterprise adoption and network growth. LNQ addresses these through a multifaceted cryptoeconomic design: probabilistic semi-verifiability via watcher nodes (initially centralized for uptime and spot benchmarking, transitioning to provider opt-in services); antagonistic staking and slashing mechanisms ensuring honest provision (with reputation scores offsetting collateral requirements while bounding exploits); lease-based escrows for requestors (fixed-term rentals with renewal deposits tied to LNQ-USDC hedges for rate stability); and a staking pool that absorbs volatility risks, earning yields from fee shares, slashes, failed governance, and penalties. Key innovations include Adaptive Unlock Emissions (AUE) modeling "as-if-mint" dynamics for the upfront 1 billion supply, bounding inflation to GMV growth; Hedge Weighted Pricing (HWP) with user-adjustable USDC ratios to mitigate sell pressure while funding an insurance buffer; veLNQ governance for antagonistic dispute resolution (three-tiered: automated, juror, council), parameter adjustments; and GMV-tied deflationary burns (for instance 25% of fees) to foster scarcity. Developer grants, streamed via governance to qualifying providers, are capped by AUE-derived treasury inflation. We demonstrate resilience across scenarios: define how we measure growth, supply-demand imbalances, and explore dispute equilibria. Under current assumptions we project up to 85% organic cost savings_[2] from bidding and sufficient uptime under attacks. This framework positions LNQ as a sustainable backbone for decentralized compute, overcoming non-verifiability through economic security thresholds exceeding attack costs, while enabling seamless Arbitrum integrations for scalability. Future extensions, including zk hybrids, persistent storage on provider nodes, and stablecoin hedge mechanics underscore LNQ's potential to capture enterprise workloads in a maturing DePIN ecosystem. # Section 1: Building Blocks of a Decentralized Compute Marketplace and Evaluation of Existing Solutions Decentralized compute marketplaces represent a paradigm shift from traditional centralized cloud leveraging blockchain-enabled infrastructure, peer-to-peer networks to aggregate and distribute computational resources. These systems aim to democratize access to compute power, reducing through underutilized hardware while introducing cryptoeconomic incentives to ensure trust-minimized reliability in environments. However, they face unique challenges, including verification complexities, incentive misalignments, and scalability hurdles. This section delineates the core components of such marketplaces, evaluates prominent existing solutions through quantitative metrics and critiques, and positions LingProtocol's LNQ token as a targeted response to identified market gaps. ## 1.1 Core Components of Decentralized Compute Marketplaces At the foundation of decentralized compute marketplaces lie several interdependent components that facilitate efficient resource allocation and execution in a distributed setting. Requester-provider matching relies on bidding algorithms, where requestors post job specifications (e.g., CPU/GPU requirements, duration) and providers submit competitive bids, optimized via on-chain order books and automated matching engines. Off-chain execution is critical for performance, as blockchain throughput limitations necessitate external computation; in LingProtocol, this is monitored through watcher nodes that perform probabilistic uptime checks and spot benchmarking to verify provider capabilities (initially centralized or elected for reliability, transitioning to opt-in services run by providers using Kubernetes stacks, rewarded from the L2 treasury funded by protocol fees). On-chain settlement occurs via escrows, where LNQ tokens are locked upon job acceptance and released upon completion, with streaming payouts accommodate variable usage. Hybrid trust mechanisms blend cryptographic and economic primitives: staking provides collateral against dishonesty, while reputation scores (numerical, non-decaying, adjusted based on job benchmarks) outcomes and offset staking for reliable requirements providers. Mathematically, supply-demand equilibrium can be modeled using a production function adapted from storage analogs like Filecoin[3], where marketplace output Y depends on provider count L and gross marketplace value (GMV, K): $$Y = A L^{\alpha} K^{\beta}$$ - Y Observed compute throughput (eg,. vCPU-hours cleared per epoch) - L Active, verified providers (supply). - K Gross Marketplace Value, denominated in LNQ (demand). - A Efficiency factor uplifted by watcher coverage and network latency; a greater value for A results in squeezing more work out of the same inputs. - α Elasticity of supply (how aggressively extra machines boost throughput.) - β Elasticity of demand (how readily fresh GMV turns into executed jobs.) With $\alpha, \beta < 1$ and $\alpha + \beta < 1$, returns diminish. This is useful, because it keeps the network from overshooting into wasteful over-capacity. - If $\alpha > \beta$ hardware is scarce; emissions and grants should target providers, not marketing. - If $\beta > \alpha$ customers are the choke point; fee cuts or UX subsidies move the needle faster than more GPUs. - Watchers shift A rightward (double the sampling rate, no extra token spend.) Note: LinqProtocol does not inherently suffer from the same loss as Filecoin when excess idle hardware is part of the network due to the difficulty in monetizing idle storage capacity. With LinqProtocol In the case of $\alpha > \beta$ the possibility exists of allowing opt-in services - that do not explicitly require network demand - to run on provider machines such as Monero, Bitcoin, or other miners to generate value. Further discussion of this is deprioritized but noted for future consideration. In comparison to centralized systems like Amazon Web Services (AWS), decentralized models offer potential cost variability and savings. AWS EC2 instances charge approximately \$0.05 per vCPU-hour for standard Linux on-demand pricing in 2025 [3], providing predictable but rigid scalability. Decentralized variability arises from bidding dynamics, potentially yielding up to 85% [2] savings through market competition, though offset by verification overheads and volatility risks. This cost-benefit analysis underscores the need for robust incentives to bridge the gap between centralized reliability and decentralized efficiency. ## 1.2 Comparative Evaluation of Existing Solutions To contextualize LNQ's design, we evaluate key decentralized compute and storage projects using 2025 metrics, including token price, total value locked (TVL) or market capitalization as proxies for network value, active providers/miners, yields where applicable, and notable critiques. Data is drawn from real-time market analyses as of July 2025. In-depth critiques reveal common pitfalls: Filecoin's over-collateralization fosters centralization, as evidenced by persistent miner concentration due to to very large up-front staking costs.[21]; Golem's cold-start problems manifest in low adoption rates, stemming from verification scalability and user friction. ## 1.3 Market Gaps and LNQ Positioning The evaluation in **Table 1.1** exposes critical gaps in the DePIN landscape: high verification overheads in zk-proof systems (general latency increases of 20-40% in decentralized compute in the most optimistic cases, per 2025 analyses_[5]), token volatility impeding enterprise uptake, and incentive misalignments leading to centralization or low adoption rate. These issues stifle the sector's potential, despite projections of exponential growth to \$3.5 trillion by 2028[1]. LNQ positions itself to address these through semi-verifiability via watcher nodes (probabilistic uptime/spot checks enabling efficient trust without zk overhead, showing resilient equilibria under attacks); antagonistic mechanisms (staking/slashing with reputation offsets to bound exploits); and volatility mitigations (hedges and lease escrows for predictable costs). Empirical grounding from Akash's volatility-driven barriers underscores LNQ's hedge-weighted pricing as a key enabler for enterprise workloads, fostering organic (up to 85%[2]) savings via bidding while aligning multi-role incentives for sustainable growth. | Project | Token
Price
(USD) | TVL/Market
Cap (est. USD) | Active
Providers/
Miners | Yields (est.) | Key
Critiques | |--------------------|-------------------------|------------------------------|--------------------------------|---------------|---| | Golem
(GLM) | ~\$0.26 | ~\$260M
(market cap) | ~5K | N/A | Cold-start issues persist, with years of slow adoption across the network. | | Filecoin (FIL) | ~\$2.62 | ~\$1.5-2B
(market cap) | ~3K | N/A | Fosters centralization, as evidenced by persistent miner concentration due to the very large up-front staking cost.[21] | | Akash (AKT) | ~\$1.39 | ~\$330M
(market cap) | N/A | ~15% | Volatility and payment barriers hinder enterprise adoption. | | Render
(RENDER) | ~\$3.75 | ~\$2B (market cap) | N/A | N/A | Emissions pitfalls lead to inflationary pressure, diluting value despite GPU focus.[6] | **Table 1.1** - Comparative Analysis of Existing Decentralized Compute Marketplaces (from Data Collected in 2025) ## Section 2: Basic Incentives Driving Semi-Verifiable Compute Provision via Antagonistic Mechanisms In decentralized compute marketplaces, where full cryptographic verifiability often incurs prohibitive costs, incentive mechanisms must bridge the trust between participants. Semi-verifiability emerges as a pragmatic approach, relying on probabilistic checks rather than exhaustive proofs to deter dishonesty while maintaining efficiency. This section formalizes semi-verifiability in the context of LingProtocol, emphasizing the role of watcher nodes, and delineates antagonistic mechanisms including staking, slashing, and reputation systems that drive honest behavior. on game-theoretic principles, we demonstrate how these elements achieve Nash equilibria for reliability, with ties to dispute resolution processes that enforce slashing and reputation adjustments in the ProviderRegistry. This design addresses core DePIN challenges, such as the verifier's dilemma in blockchain protocols, where participants may shirk verification to conserve resources.[7] ## 2.1 Defining Semi-Verifiability in Compute Semi-verifiability in decentralized compute refers to a hybrid trust model where task outcomes are not fully cryptographically proven but are probabilistically validated through sampling and monitoring, balancing computational overhead with deterrence. economic This contrasts deterministic verifiability, exemplified by zero-knowledge proofs (ZKPs), which provide irrefutable evidence of correctness but introduce significant latency and resource demands. For instance, ZKP-based verifiable machine learning frameworks often exhibit excessive overheads. In other mechanisms such as TEEs (Trusted Execution Environments) overheads are observed to be ~20%.[5] Such tradeoffs are in part due to the complexity of proof generation and verification in decentralized settings. These trade-offs acute in real-time particularly or resource-constrained DePIN applications, where full ZKP deployment can hinder scalability and adoption. Diagram 1.1 - Watcher-based semi-verifiability flow In LinqProtocol, semi-verifiability is achieved through watcher nodes that consume two complementary data streams from every provider cluster: (i) continuous telemetry of resource-level metrics and logs, and (ii) results from mandatory pre-deployment benchmarks plus opportunistic "spot checks" executed randomly whenever capacity sits idle. Together, these feeds let watcher nodes maintain a near-real-time performance profile, surfacing issues such as network outages, power loss, or ageing hardware before they impact workloads. During the network's initial phases, watcher nodes are operated by a small, centrally elected set of nodes financed by the L2 treasury; over time, providers can **opt-in** to host the service themselves, earning additional rewards and progressively decentralising verification. Under current assumptions we expect that by sampling only $\approx 10-20$ % of time windows and tasks, the system attains a misconduct-detection probability of ~ 0.8 without incurring the latency overhead of deterministic proofs. Signed watcher attestations flow straight into the dispute engine, where they can trigger automated slashing or reputation adjustments in the ProviderRegistry, tightly coupling verification with economic enforcement and deterring rational misbehaviour. ## 2.2 Antagonistic Incentive Mechanisms Antagonistic incentives in LinqProtocol leverage economic penalties and rewards to align provider behavior with network integrity, creating a self-enforcing system where the cost of deviation exceeds potential gains. Central to this is dynamic staking and slashing: providers must stake collateral proportional to job value, formalized as: $$S_{\text{reg}} = \alpha V_{\text{job}}$$ Where α is a risk factor (e.g., 1.5x for high-value tasks to account for variability) and V is the total job value. To prevent exploits, such as partial completion where rewards outweigh penalties, the mechanism enforces that any partial reward is strictly less than the staked amount, bound by governance parameters to maintain exploit resistance. Game-theoretically, this yields a Nash equilibrium for honest participation. Consider a provider's strategy space: honest execution yields the full job reward, while deviation (e.g., falsifying results) risks detection and slashing. The expected loss for deviation is modeled as: $$\mathbb{E}[loss] = p_{detect} \ \sigma \ S$$ - P_{detect} probability the watcher network catches a bad result (assumed to be ≈ 0.8). - σ fraction of the stake burned when you're caught (0.5 by default). S – the amount of LNQ the provider had to lock for the job. To keep cheating irrational, we require this expected loss to outstrip the best payoff a provider could get by falsifying results, $G_{\rm misconduct}$; in other words: $$p_{\text{detect}} \sigma S \geq G_{\text{misconduct}}$$ With today's baseline numbers, the cheater expects to forfeit 40% of their stake every time they deviate. In practice, a profit-seeking provider quickly realises that honest execution is the only strategy that pays. Sybil resistance is further bolstered by reputation-weighted staking, where a provider's numerical reputation score (adjusted via job outcomes and benchmarks) impacts staking offsets, for example higher scores reduce required collateral through a multiplier of 1 divided by reputation factor, with limits to cap reductions. Reputation-weighted staking ties a provider's collateral directly to their track record. For any job, the stake required is: $$C_{\text{req}} = \frac{S_{\text{base}}}{R}, \quad \text{clamped to } C_{\text{min}} \leq C_{\text{req}} \leq C_{\text{max}}.$$ Here S_{base} is the baseline stake and R is the provider's current reputation score. A newcomer with $R\!pprox\!0.5$ posts the full baseline amount, whereas a well-proven node with R=1 locks only a fraction of it. Governance-defined floors (C_{\min}) and ceilings (C_{\max}) prevent either extreme under-collateralisation or punitive over-collateralisation, keeping sybil attacks costly while avoiding Filecoin-style over-staking spirals. Because reputation rises slowly with successful completions and falls sharply on disputes or uptime failures, collateral automatically adjusts: good actors see their capital burden lighten, while inconsistent or pseudonymous actors face higher stakes until performance improves or they exit the market. This integrates with the ProviderRegistry, where disputes trigger score deductions and slashes, preventing pseudonymous attacks by tying influence to verifiable history. Such mechanisms echo reputation-based consensus in PoS systems, enhancing sybil resistance without excessive centralization. Overall, these antagonistic elements ensure semi-verifiable compute remains robust, with watcher ties amplifying detection and enforcement. # Section 3: Incentive Structures for Network Participants Decentralized compute marketplaces function as multi-sided platforms, connecting requestors seeking resources with providers offering them, while stakers and governance participants underpin security and decision-making. Effective incentive design is crucial to align behaviors across these roles, mitigating issues like free-riding or adverse selection prevalent in blockchain ecosystems. In LingProtocol, incentives are antagonistic, rewarding cooperation while penalizing deviations through staking, reputation, and governance mechanisms. This section details the structures for each participant group, quantifying yields where possible and modeling multi-sided equilibrium to balanced growth. Drawing game-theoretic analyses of blockchain incentives, such as collective punishment schemes that deter faults in decentralized settings, LNQ's design fosters a self-sustaining economy where participant utilities are interdependent. ## 3.1 Requestors (Clients) Requestors, as compute consumers, incentivized through mechanisms that ensure reliable access while minimizing abuse risks. The primary incentive for Requestors is the reduced cost of compute by means of antagonistic bidding between Providers as well as access to reputation/cost tradeoffs which can be made at the Requestors discretion. Anti-abuse is enforced via lease-based escrows: a lease represents a fixed-term compute rental (e.g., 30 days at 0.84 LNQ per hour, requiring full up-front deposit in LNQ or hedged equivalents). Renewal occurs on any day before the lease expires via another full-term deposit, tied to LNQ-USDC hedges (see Section 6) for rate locks that stabilize costs against volatility. Boundaries are clearly defined: cancellations incur a small penalty (e.g., 5-10% of remaining escrow is split between between the passive staking pool as a reward for the risk assumed by providing LNQ liquidity to settle the escrow and a portion of the penalty fee is directed to the Provider as a compensation for the
opportunity cost), with no impact on completed work as payouts are streamed proportionally. This handles variable usage efficiently, as underutilized leases still allow pro-rata refunds minus penalties, aligning with economic models of resource allocation in multi-sided platforms where penalties deter wasteful behavior. Savings for requestors are organic, derived from market competition in the bidding ecosystem, expected to yield up to 85%[2] reductions below centralized benchmarks (e.g., AWS vCPU-hour rates ~\$0.05 in 2025)[3] through supply-demand dynamics. Users can select providers based on reliability-cost trade-offs, such as opting for lower-reputation nodes for greater savings, fostering a competitive equilibrium where bid spreads reflect risk-adjusted pricing. This mirrors incentive schemes in federated learning marketplaces, where client-side rewards encourage participation without direct yields. #### 3.2 Providers Providers, as resource suppliers, are motivated by direct job fees with reputation and slashing ensuring accountability. Reputation is a numerical score (e.g., 0-100 scale) with no decay, increasing on successful job completions and decreasing on failures, benchmark shortcomings, or uptime check lapses irrespective of job state to capture holistic reliability. Staking offsets are straightforward yet bounded: collateral requirements are reduced via a multiplier equal to 1 divided by reputation factor as explained in **Section 2.2** with minimum/maximum limits (e.g., 0.5-2x base) to prevent over-reliance on reputation and bound exploits where partial rewards might exceed penalties. This design integrates with the ProviderRegistry, where disputes trigger slashing (e.g., 20-90% of stake depending on the dispute tier) and score adjustments, updating eligibility for future jobs. This aligns with reputation mechanisms in blockchain systems, where score-based weighting deters sybil attacks and promotes long-term honesty. Game-theoretic models of staking in proof-of-stake networks confirm that such offsets achieve equilibrium by making deviation costs (slashing) outweigh gains, with registry updates enforcing transparency.[9] ## 3.3 Stakers and Governance Participants Stakers and governance participants form the network's security and decision-making backbone, with yields and antagonistic elements driving engagement. There are two factions of governance stakers in the ecosystem with separate and defined roles. Protocol governance voters can vote on protocol adjustments and are penalised for failure to form majority consensus only in the cases where governance proposals are passed. In Section 3.4 we explore how proposals are created and the exact mechanics of protocol-level governance. Separately, dispute governance voters can risk a portion of their stake and vote on outcomes in dispute resolutions between Requestors and Providers. Dispute governance voters are penalized for failure to form a majority consensus by means of slashing minority consensus voters' stakes and redistributing them with the majority of the jury regardless of dispute outcomes. In Section 8 we discuss the mechanics of dispute resolution in depth and explore the various dispute tiers. Passive stakers not participating in governance earn from four sources: fee shares (e.g., 20% of protocol take slashing shares (from provider/juror rates), penalties participating in dispute resolution), failed governance proposition shares (slashed LNQ redistributed), and refund penalties (from lease cancellations). Annual percentage yield (APY) is modeled as rewards (aggregated from sources) times total fees divided by staked supply: $$\mathrm{APY} = \frac{\mathrm{rewards} \times \mathrm{total_fees}}{\mathrm{staked_supply}}$$ Protocol governance operates through stake-locked voting pools yielding veLNQ (vote-escrowed LNQ), enabling participation in protocol-level proposals. In the case of disputes jurors are randomly selected from governance pools for votes, with duties limited to availability for calls. This mirrors proof-of-reputation frameworks where minority penalties enforce alignment. Watcher nodes, as a separate service not directly participating in governance but serve an important role in dispute resolution. Watcher nodes are treasury-funded (from protocol fees) for network verification, with long-term opt-in by providers earning additive yields. ## **Section 3.4: Protocol Governance** Protocol-level decisions such as parameter tuning, contract upgrades, and treasury actions are enacted through a stake-weighted ballot in which every participant locks LNQ to mint vote-escrowed tokens (veLNQ). The mechanism introduces two capital flows that jointly finance security and provide the passive pool with non-inflationary yield: an *irrevocable proposal fee* that is siphoned to the insurance buffer, and a *refundable proposal bond* that is conditionally redistributed once the vote finalises. Let $$B>0$$ (bond size), $f \in (0,1)B$ (flat fee), $\sigma_m, \sigma_p \in (0,1)$ (slash rates), where σ_m governs minority penalties when a proposal *passes* and σ_p governs proposer penalties when a proposal *fails* (default $\sigma_p = 1$). The execution logic is: ## 1. Proposal submission The proponent deposits B; a fraction f is paid into the insurance buffer immediately, rendering proposal spam economically costly even before voting begins. ## 2. Ballot resolution After the quorum-constrained window closes, votes are decrypted and tallied. *If the proposal passes* the bond is returned with a modest premium $\rho B(\rho \ll 1)$, financed by slashing the stake of voters on the minority side: each minority voter loses $\sigma_m s_i$, where s_i is the LNQ weight of their ballot. The remainder of the minority pot is streamed pro-rata to majority voters, creating a direct economic signal to coordinate on outcomes likely to enjoy broad support rather than merely "any change". *If the proposal fails* the bond is confiscated: $\sigma_p B$ is credited to the passive staking pool, rewarding long-horizon capital for gate-keeping against low-quality or self-serving proposals, while the small residual $(1 - \sigma_p)B$ is recycled to the treasury. Crucially, voters themselves are never slashed in a failed ballot, eliminating the perverse incentive to sabotage passage purely for yield. ### 3. Payout algebra Denoted by M and \bar{M} the total stake on the majority and minority sides, respectively. For a passing proposal the expected net change for a representative majority voter staking ^{S}j is $$\Delta_j^{\text{maj}} = \rho \frac{B}{M} + \sigma_m \frac{s_j \bar{M}}{M} - c,$$ where c is the opportunity cost of locking tokens during the voting window. Because $\rho \ll \sigma_m$ and B itself is at risk, the payoff is dominated by coordination accuracy rather than by bond farming; conversely a minority voter expects $\Delta^{\min} = -\sigma_m s_i - c,$ establishing a strict incentive to side with the most plausible majority while still allowing principled dissent when the expected social benefit exceeds private loss. For a failing proposal Δ_j^{maj} and Δ^{min} collapse to -c: turnout is rewarded only through the reputational externalities of active governance, not through zero-sum transfers. ## 4. Parameter governance. All coefficients $(B, f, \sigma_m, \sigma_p, \rho)$ reside in **ParamHub** and thus can themselves be tuned by the very mechanism they regulate, enabling reflexive calibration as network conditions evolve. Bounds are hard-coded in the protocol to preclude self-destructive oscillations. By taxing proposal quality rather than voter dissent, the scheme preserves pluralism where minority voices pay only when proven wrong, while still channelling a predictable revenue stream to passive stakers and the insurance buffer. Game-theoretic analysis mirrors Schelling-point courts in showing that, under honest-majority assumptions, the equilibrium strategy for rational token-holders is to submit only proposals whose expected social surplus outweighs the probabilistic bond loss, and to vote truthfully on anticipated majority sentiment. As such, governance becomes a capital-efficient public good rather than a rent-extraction vector, dovetailing with LingProtocol's broader antagonistic, yet cooperative, incentive architecture. [10] ## Section 4: Token Distribution, Vesting Schedules, and Multi-Role Utility Token distribution and vesting are foundational to cryptoeconomic credibility, preventing premature dilution, aligning long-term incentives, and mitigating risks such as insider dumps that have plagued early blockchain projects. In DePIN ecosystems, where network growth depends on sustained participation, adaptive vesting tied to milestones (e.g., GMV thresholds) enhances sustainability by correlating supply release with value creation. This section outlines LNQ's distribution and vesting framework, designed for transparency and growth alignment, before consolidating its multi-role utility as a medium of exchange, collateral, and governance instrument. Emissions are governed by Adaptive Unlock Emissions (AUE) to simulate controlled minting, ensuring inflation scales with network health. ## 4.1 Token Distribution and Vesting LNO's distribution prioritizes ecosystem sustainability, with allocations structured to bootstrap participation while vesting schedules enforce commitment. Token distributions for the project itself are emitted gradually as a percentage of AUE unlocks and tie rewards to performance. Higher GMV and network growth accelerate emissions, creating a direct incentive development (e.g., more active leases/GMV = proportionally more tokens, bounding project inflation to network expansion). The treasury is allocated a portion for operational needs, such as developer grants and watcher node rewards, funded within AUE-derived limits to cap spending. This adaptive approach mitigates risks observed in
fixed-vesting models, where premature releases lead to volatility, and draws from milestone-based vesting in DePIN protocols, which correlate supply with utility to enhance token velocity and holder retention. Transparency is enforced via on-chain tracking, with relocks from Unicrypt to the L1 treasury ensuring emissions reflect real activity (see Section 5.1). ## 4.2 Multi-Role Utility Overview LNQ's utility spans multiple roles, creating a cohesive economy where token demand scales with network usage, akin to multi-functional assets in layered blockchain designs that enhance composability and value accrual. As a medium of exchange, LNQ facilitates lease payments in the marketplace: requestors deposit LNQ (or hedged equivalents) into escrows for fixed-term rentals, with streaming payouts to providers ensuring granular compensation. This role drives organic demand, as increased job volume directly correlates with token circulation. In staking, LNQ serves as collateral for providers and yields for passive stakers as a reward for risk exposure (from fee shares, slashes, etc.), while also absorbing hedge risks for example, staking pools cover refunds/liquidations in USDC hedges, positioning stakers as a stabilizing force with APY tied to ecosystem health. Governance utility manifests through veLNQ: time-locked stakes in voting pools grant weighted votes for proposals (e.g., parameter adjustments) and juror roles in disputes, with antagonistic rewards successful/lost outcomes) and slashes (minority fostering honest participation. multi-role integration reduces token velocity by encouraging locks, as modeled in utility token frameworks where governance rights amplify holding incentives, ultimately supporting LNQ's deflationary trajectory as usage grows. # Section 5: Special Network Requirements for LNQ, Including Adaptive Unlock Emissions Rate Blockchain tokenomics often necessitate specialized mechanisms to balance supply dynamics with network growth, particularly in DePIN ecosystems where upfront minting can lead to inflationary pressures without adaptive controls. For LNQ, these requirements include Adaptive Unlock Emissions (AUE) to simulate controlled minting for the 1 billion upfront supply, ensuring inflation sustains but does not outpace utility. Additionally, deployment on Arbitrum as an optimistic rollup addresses scalability while prioritizing security through fraud proofs. This section formalizes AUE as an "as-if-mint" process and analyzes Arbitrum's Layer-2 (L2) integration, emphasizing Ethereum (ETH)/Arbitrum focus for low-friction user acquisition. Future extensions, such as LingChain for a native hub, are noted but deprioritized to minimize initial complexity. These features draw from dynamic supply models in blockchain literature, where adaptive mechanisms mitigate dilution risks in utility-driven tokens. ## 5.1 Adaptive Unlock Emissions (AUE) AUE functions as a closed-loop controller that aligns LNQ's fixed supply with real usage. Unlocks are held in Unicrypt and emitted only when the network's composite growth signal warrants it, functioning as an "as-if-mint" mechanism to sustain proportional liquidity. Emissions to the L1 treasury at block-time t are computed via a dynamic feedback equation: $$e_t \; = \; P \big(g_t - g_{\mathrm{target}} \big) \; + \; I \! \int_0^t \! \big(g_\tau - g_{\mathrm{target}} \big) \, d\tau \; + \; D \, \frac{dg_t}{dt} \label{eq:etataget}$$ - ullet e_t Tokens emitted to the L1 treasury at block-time t. - 9t Composite growth signal (leases + volume + staked wLNQ, individually normalised and weight-averaged). - g_{target} Governance-set reference track for sustainable expansion (e.g., 5% MoM growth). - P, I, D are tunable gains controlling real-time response, bias correction, and volatility dampening, respectively (adjustable on-chain via Paramhub to keep variance in check). The controller borrows directly from classical PID design[11]: the P term reacts to the present gap, I soaks up cumulative drift, and D dampens sudden lurches. In practice this means: - a **small network** (negative gap) retains 80-90% of tokens re-locked, curbing premature inflation. - a surging network (positive gap) emits more tokens to support scaling, but derivative dampening prevents supply shocks from transient spikes. ### Decoding the growth signal $$g_t = w_L \, \hat{L}_t + w_V \, \hat{V}_t + w_S \, \hat{S}_t,$$ $$w_L + w_V + w_S = 1$$ Where: $\hat{L}_t = \text{leases}t/\text{leases}norm,$ $\hat{V}_t = \text{volume} t / \text{volume} norm,$ $\hat{S}_t = \text{wLNQ}t/\text{wLNQnorm}.$ Weights w_{\bullet} encode strategic priorities (e.g. bias towards security early on (w_S^{\uparrow}) or towards demand in expansion phases (w_V^{\uparrow}) .) Normalisers are rolling medians that keep the metric dimensionless and resistant to outliers. #### **Governance levers** - PID gains tuned quarterly; raising P quickens response at the cost of volatility, upping I closes long-term bias, D dampens noise. - Signal weights re-balanced via DAO votes as the network graduates from boot-strap to scale. - Target track can be static (e.g., 5 % MoM) or algorithmic (e.g., trailing GMV exponential-moving-average). Unlike conventional vesting, AUE introduces a cryptoeconomic reflex: LNQ's supply adapts to verifiable usage, not schedule. As long as g_t mirrors genuine activity and the gains are tuned for stability, LNQ's supply remains both elastic and predictable, two traits that legacy DePIN tokens rarely achieve. ## **5.2 Other Requirements** LingProtocol's deployment on Arbitrum as an optimistic rollup fulfills scalability needs while inheriting Ethereum's security, focusing on ETH/Arbitrum interoperability for low-friction user base expansion. Arbitrum's fraud proofs enable challenge-based validation: any participant can dispute invalid state transitions within a window (e.g., 7 days), with resolution on L1 Ethereum via interactive games that bisect execution traces until fraud is proven or disproven. With current and future proposed additions to Arbitrum it could reduce gas costs by 10-100x compared to L1[12], facilitating high-throughput without leases compromising finality. The ETH/Arbitrum focus prioritizes seamless onboarding, leveraging Ethereum's liquidity for LNQ bridging while minimizing cross-chain risks. Future potential includes LinqChain as a native hub for expanded services, but this is deprioritized to avoid friction in early adoption phases. # Section 6: LNQ-USDC Hedges and Hedge Weighted Pricing for Volatility Mitigation Token volatility poses a significant barrier to enterprise adoption in DePIN ecosystems, where price fluctuations can disrupt budgeting and erode trust in utility-driven assets. LNQ addresses this through integrated hedging mechanisms that blend native token usage with stablecoin anchors, enabling predictable pricing without forsaking cryptoeconomic alignment. This section introduces LNQ-USDC hedges as an on-chain volatility buffer, formalizes Hedge Weighted Pricing (HWP) with user-configurable parameters, and evaluates enterprise compatibility alongside risks. By leveraging staking pools as risk absorbers, these features mitigate sell pressure and stabilize flows, drawing from analyses of stablecoin integrations in blockchain economies that reduce variance in participant utilities. **Note:** USDC is used as the only stablecoin in this document to illustrate the relationship between LNQ and a hedge stablecoin. In future versions of this document stablecoins may be generalized to include a wider range of stablecoins not limited to USDC. ## 6.1 Introducing LNQ-USDC Hedges LNQ-USDC hedges are on-chain constructs that allow requestors to lock LNQ against USDC equivalents, stabilizing lease payments amid token price swings. Implemented via multi-oracle consensus (e.g., Chainlink combined with secondary feeds for fallbacks, ensuring redundancy against single-point failures), these hedges query external price data to enforce rate locks at lease initiation. This setup mitigates oracle manipulation risks through aggregation to reduce attack surfaces in volatility scenarios. Comparisons to stablecoin integrations in DePINs highlight LNQ's hybrid approach: LNQ's hedges uniquely tie USDC to staking pool dynamics for ecosystem-wide benefits. This preserves LNQ's utility dominance while enabling enterprise-grade predictability, addressing critiques in DePIN tokenomics where unmitigated volatility hampers supply-side stability. ## **6.2 Hedge Weighted Pricing (HWP)** HWP formalizes volatility mitigation by computing effective lease prices as a weighted average: price = $$w p_{\text{LNQ}} + (1 - w) p_{\text{USDC}}$$ - $\bullet \quad w$ user-selected hedge weight, (e.g., $w=0.7 \,\, {\rm for} \,\, 70\% \, {\rm LNQ} \,\, {\rm exposure}) \, {\rm where}$ $0 \leq w \leq 1$ - o $w = 1 \rightarrow 100 \%$ LNQ exposure (no hedge). - o $w = 0 \rightarrow 100 \%$ USDC exposure (full hedge). - p_{LNQ} spot price of LNQ pulled from the oracle set at lease creation. - PUSDC \$1.00 by design; the oracle is only a sanity check. - price effective cost of the lease in on-chain accounting units (always paid in LNQ, but hedged internally). Higher USDC weighting (lower w) incurs elevated take rates via a governance-adjustable curve. More USDC means the protocol shoulders more hedge risk, so it charges an additional fee. A simple, governance-tunable curve is: $$take(w) = base + k(1-w)^2$$ - base minimum protocol fee when w = 1 (pure-LNQ). - k curvature parameter set by governance (default $k \approx 0.1$). The quadratic term hits hardest near w=0; light hedgers pay almost nothing extra, but "majority-stablecoin" clients finance the insurance buffer (discussed further in this section). The take rate is expressed as a quadratic as a linear take rate would under-charge at high hedge ratios. A convex curve prices the tail-risk more aggressively without nuking moderate hedges. Mechanics
within the escrow are intricate: selecting higher USDC locks proportionally more LNQ against USDC (e.g., via oracle-pegged swaps); payouts stream from the staking pool to providers at agreed rates; upon completion, LNQ is refunded to the pool, or USDC is liquidated (benefiting the pool on LNQ price drops, as liquidation yields more LNQ). An insurance buffer, incrementally funded from fee splits (e.g., 2-3% of transaction fees), covers rare losses, ensuring pool wholeness. The staking pool absorbs risks as a centralized hedge, enabling benefits like reduced sell pressure on pure LNQ usage (higher w preserves token velocity) while counter-cyclically rewarding stakers on downturns. This antagonistic design where USDC hedges cynically exposes the pool to upside on drops and aligns with economic theories of risk-sharing in decentralized networks, fostering resilience without external dependencies. Note: If the insurance pool grows continuously without depletion from refunds to the passive staking pool, a recycling mechanism may be introduced to prevent the pool's value from approaching the circulating supply. This scenario is currently considered unlikely and is therefore deprioritized. Additionally, the system should prevent the LNQ-USDC hedges from exhausting the insurance buffer by adjusting the maximum hedge or increasing the insurance buffer fee rate through governance control. ## 6.3 Enterprise Compatibility and Risks HWP enhances enterprise compatibility by enabling fixed-rate budgeting, akin to centralized clouds but with DePIN efficiencies. Risks include oracle failures (mitigated through consensus and buffer funding) and liquidation slippage in extreme volatility. This approach positions LNQ for enterprise workloads, where predictable costs outweigh residual risks. ## Section 7: Staking Mechanics, Inflation Bounds, and Deflationary Economics Staking forms the cryptoeconomic core of many blockchain systems, providing security through collateral while generating yields to incentivize participation. In DePIN contexts, staking mechanics must balance inflation risks with deflationary pressures to ensure long-term sustainability, as unchecked supply growth can erode token value amid volatility. LNQ merges these elements into a cohesive framework: staking serves as collateral, yield source, and governance enabler, with bounds on inflation tied to network metrics and deflation driven by usage. This section formalizes consolidates staking roles, inflation/deflation bounds, and projects accrual under DePIN best practices. ## 7.1 Staking Mechanics LNQ staking consolidates roles across participants, creating an antagonistic system where collateral deters misconduct, yields reward commitment, and voting empowers governance. For providers, staking acts as collateral with reputation offsets: $$S_{\text{eff}} = \text{clip}\left(\alpha V_{\text{job}} \frac{1}{R}, \ 0.5 \ V_{\text{job}}, \ 2 \ V_{\text{job}}\right)$$ Dynamic requirements (e.g., 1.5x job value) are reduced via limits (multiplier = $\frac{1}{R}$, bounded 0.5-2x) to prevent exploits, ensuring partial rewards < stake. Passive stakers earn yields from 3-4 sources; fee shares (e.g., 20% protocol take), slashes (from providers/jurors), failed governance propositions (slashed LNQ redistributed), and penalties (e.g., lease cancellations). These rewards are modeled as annual percentage yield (APY) equal to rewards (aggregated sources) times total fees divided by staked supply. $$APY = \frac{rewards \times total_fees}{staked_supply}$$ Governance leverages veLNQ: time-locked stakes qualify for voting/disputes, with antagonistic slashes (minority votes in the case of successful proposals, or proposal bond slashing in the case of failed proposals) feeding the pool. The staking pool doubles as a hedge, absorbing/refunding hedge risks via an insurance buffer (fee-funded, e.g., 2-3% splits), maintaining wholeness in volatility. This mirrors DePIN frameworks where token incentives sustain participatory sensing through diversified yields, fostering equilibrium in multi-agent economies. [13], [14] Diagram 1.2 - Staking pool income and rewards flow ## 7.2 Inflation Bounds and Deflationary Mechanisms Inflation is governed dynamically to sustain proportional expansion without inducing dilution. Token emissions are modulated by the Adaptive Unlock Emissions (AUE) controller, which adjusts release rates in response to deviations between the observed composite growth signal and a governance-defined target trajectory (see **Section 5.1**). Using a minimal computer simulation we illustrate what an optimal inflation/deflation curve looks like in both optimistic and pessimistic scenarios over 5 years as illustrated in **figure 1.1.**. Figure 1.1 - Optimal Inflation vs Deflation theoretical projection Deflationary counterbalance is achieved through proportional token burns, parameterized as: $$Burns_t = \gamma \cdot GMV_t$$ where $\gamma=0.25$ is a tunable protocol parameter and GMV_t denotes the total value of completed jobs and leases in LNQ equivalents at time t. This linear relationship ensures that deflation scales dynamically with real economic throughput, introducing scarcity as a function of productive activity. To prevent destabilizing contractionary effects in the long term, γ is subject to governance calibration via ParamHub, allowing the protocol to progressively taper the burn coefficient as circulating supply declines or systemic liquidity conditions warrant adjustment. While no additional LNQ may be minted beyond the initial fixed supply of 1 billion tokens, governance maintains discretion over deflationary pressure through modulation of γ , enabling equilibrium between value accrual and long-horizon network participation. Token velocity is indirectly governed via exchange-theoretic dynamics: $$V_t = \frac{P_t \cdot Q_t}{M_t}$$ where V_t is token velocity, P_t the aggregate price level, Q_t transaction volume, and M_t the token supply. By coupling burns to transaction-linked GMV, the mechanism anchors monetary throughput to usage fundamentals, mitigating inflation/deflation spirals and aligning monetary contraction with utility rather than speculation. Diagram 1.3 - Conceptual inflation vs deflation mechanism # Section 8: On-Chain Dispute Resolution via a Three-Tiered System Dispute resolution is essential in decentralized systems to adjudicate conflicts arising from off-chain execution, such as failed tasks or misconduct, without relying on centralized authorities. In blockchain ecosystems, on-chain mechanisms leverage cryptoeconomic incentives to achieve fair outcomes, but they must balance efficiency, cost, and security to prevent capture or inefficiency. LingProtocol's three-tiered system escalates from automated checks to community and council involvement, tying directly to participant roles (e.g., watcher nodes supply evidence, governance jurors vote via veLNQ) antagonistic incentives (slashes/rewards) alignment. This hybrid approach addresses the "oracle problem" in DePINs, where external data integration risks manipulation, by incorporating probabilistic verification and game-theoretic deterrence. Modeled after decentralized arbitration protocols like Kleros, it ensures resolution costs remain low while maintaining scalability. [15] Diagram 1.4 - Three-tier dispute-resolution ladder ### 8.1 Tier 1: Automated The first tier employs smart contract logic for rapid, objective resolution of straightforward disputes, minimizing human intervention. Triggers include timeouts (e.g., provider non-response beyond lease terms) and watcher-derived evidence: uptime proofs or spot benchmarks verify performance, with failures automatically slashing stakes (e.g., 20-50%) and adjusting reputation scores in the ProviderRegistry. Watcher nodes (short-term centralized/elected, long-term provider opt-in) supply on-chain attestations, tying directly to their treasury-funded role in semi-verifiability. This automation draws from verifiable delay functions in blockchain consensus, ensuring deterministic outcomes with low latency. If unresolved (e.g., ambiguous benchmarks), escalation occurs, bounding costs to gas fees. ## 8.2 Tier 2: Community Jurors For disputes too complex for automated resolution (e.g., subjective assessments of task quality), Tier 2 engages veLNQ-staked community jurors. When a Tier 2 dispute arises, the protocol randomly samples a governance-defined fraction (default 10%) of veLNQ stakers. From this sample pool, the first 6–8 jurors (number defined by ParamHub) who explicitly "lock-in" their commitment occupy seats; others may freely ignore the summons without penalty. Jurors bond a portion of their veLNQ stake upon lock-in, but voting commences only after all juror seats are confirmed filled, at which point a 48-hour window opens. Votes remain encrypted until all jurors have submitted ballots, eliminating the risk of early-majority signaling and ensuring unbiased decision-making. Minority voters subsequently forfeit a configurable fraction of their bonded stake (minoritySlashRate); these slashes directly redistributed pro-rata to jurors on the majority side. If the jury's verdict is unanimous, no redistribution occurs, emphasizing accuracy over arbitrary financial incentives. Jurors choosing non-participation see neither reward punishment, ensuring that absence due to external circumstances, such as unexpected absence, does not lead to unintended penalties. Expected value for a juror who locks in can now be written in closed form. Let - s be the juror's bonded stake, - σ the dispute minority-slash rate set in **ParamHub**, and - Pmaj the juror's subjective probability of landing on the majority side (a function of evidence and coordination heuristics). Because a passing verdict transfers the forfeited minority bonds to the majority, while a failing verdict transfers an identical fraction from the juror's own bond, the net
payoff over the 48-hour window is $$\mathbb{E}[R] = \sigma s (2p_{\text{maj}} - 1) - c_{\text{lock}},$$ where c_{lock} captures the opportunity cost of immobilising capital (foregone passive yield and liquidity premium). A rational actor engages only if $\mathbb{E}[R] > 0$, which reduces to $$p_{\text{maj}} > \frac{1}{2} \left(1 + \frac{c_{\text{lock}}}{\sigma s} \right).$$ With representative values $\sigma = 0.10$ and $c_{\rm lock}/s \approx 0.01$ for a two-day lock. The break-even accuracy threshold is ~0.55. Thus a juror who is at least 60 % confident in their $p_{\rm maj} \approx 0.7$ (empirically assessment well-signalled disputes) expects a positive return, while anyone less certain rationally declines the summons rather than gamble on the minority. The expression formalises the intuitive Schelling incentive already embedded in the mechanism: lock-in makes economic sense only when a juror believes they can coordinate on truth more often chance, ensuring that inattentive or uninformed participants stay on the sidelines and that the seated panel converges on high-confidence voters. ## 8.3 Tier 3: Council Tier 3, reserved for highest-stake or deadlocked cases, invokes a separately elected council whose members serve fixed terms after governance ballot election. Dispute council size (3, 4, 6, or 8 members) is a ParamHub variable. Disputes escalated to Tier 3 activate only after every council seat is explicitly acknowledged, ensuring confirmed availability and engagement from proven, governance-elected members. Council candidates provide deeper contextual understanding through their prior governance participation. Council decision-making protocols mirror Tier 2 rules, including a 48-hour voting window, encrypted ballots until all council members vote, and the redistribution of minority slashes to majority voters. However, initial stakes and slashing rates at Tier 3 are significantly elevated compared to Tier 2, proportionate to the higher gravity and financial implications of escalated disputes. ## 8.4 Incentives/Analysis Incentives within LingProtocol's dispute-resolution mechanism are structured to align juror behavior truthful, accurate outcomes cryptoeconomic incentives. Jurors who voluntarily participate by staking their veLNQ tokens face potential slashing if voting in the minority position, effectively penalizing incorrect or out-of-consensus judgments. Conversely, jurors voting with the majority position receive proportionate rewards, funded directly from the slashed stakes of minority jurors. This internal redistribution ensures a closed-loop incentive system, promoting rational engagement and minimizing malicious or arbitrary voting. Opt-in participation ensures that jurors explicitly accept these potential risks and rewards, thus self-selecting for confidence and availability. Jurors unwilling or unable to commit face neither rewards nor penalties, preventing punitive consequences for non-participation due to external factors such as temporary unavailability. Through this game-theoretic approach, LinqProtocol ensures that jurors' incentives remain strongly aligned with truthful consensus outcomes, reinforcing the integrity and efficacy of the decentralized dispute-resolution framework. ## Section 9: Role of Governance in Relation to Previous Sections Governance in decentralized systems orchestrates parameter adjustments and dispute oversight, ensuring adaptability while preventing capture in environments. For LingProtocol, trustless governance integrates prior elements including staking incentives, AUE, hedges, and dispute tiers through a DAO framework that evolves from centralized controls community-driven decisions. This role mitigates risks like parameter rigidity or adversarial exploits, drawing from blockchain governance models where voting mechanisms balance efficiency decentralization. Analyses of DAO vulnerabilities emphasize the need for incentive-aligned structures to sustain long-term viability on LinqProtocol. #### 9.1 Framework The governance framework centers on a DAO utilizing veLNQ for voting power (see Section 3.4): stakes time-locked in pools enabling proposals and resolutions. Key parameters include AUE rates (emissions thresholds), burn gamma (deflation fraction), HWP curve (take rate escalations), staking mins (collateral floors), and developer grants which are proposed and passed via votes, streamed to qualifying providers (e.g., meeting registry criteria), with treasury funding limited to AUE-derived inflation to cap expenditures. See Glossary for details on ParamHub adjustable parameters. This ties to incentives: grants reward ecosystem contributions, while antagonistic slashes (e.g., failed proposals) redirect to staking pools, aligning with multi-role utility. Diagram 1.5 - Governance & veLNQ feedback loop ## 9.2 Decentralization Roadmap The roadmap progresses from an initial centralized ParamHub (team-managed for launch stability) to full DAO handover over time (e.g., 12-18 months post-mainnet). Early phases focus on security audits and parameter bootstrapping, transitioning via phased veLNQ activation to decentralize control. This staged approach aligns with blockchain decentralization metrics, where gradual shifts enhance resilience without early vulnerabilities, ensuring governance evolves with network maturity. ## Section 10: Data Storage On- and Off-Chain Data storage in blockchain systems must navigate the tension between on-chain immutability and off-chain scalability, as full on-chain persistence incurs prohibitive costs while off-chain solutions risk centralization or data loss. In DePIN ecosystems, hybrid models optimize for efficiency, leveraging decentralized protocols like IPFS for LingProtocol employs a phased approach: essential data on-chain for transparency, with off-chain storage transitioning from IPFS to provider-hosted solutions. Cost models, informed by gas analyses on rollups like Arbitrum, project minimal gas costs per transaction, bounding overheads. This section delineates on/off-chain essentials, trade-offs, and security, drawing from blockchain storage literature where hybrid designs reduce latency by 20-50% while preserving integrity. [16] #### 10.1 On-Chain On-chain storage in LingProtocol is reserved for essentials requiring immutable auditability: escrows (lease deposits/payouts), votes (governance proposals/juror decisions), and the ProviderRegistry (reputation scores, staking details). Deployed on Arbitrum, transactions incur small gas costs, enabling low-friction updates without L1 Ethereum's significantly higher fees. This selective approach aligns with cost-efficient designs in rollup ecosystems, where data availability layers minimize expenses for verifiable state. ### 10.2 Off-Chain Off-chain storage begins with IPFS for initial durability, where content-addressed files (e.g., job logs, benchmarks) are pinned across nodes to mitigate the risk of data loss. The system transitions to persistent, redundant storage provided by LNQ providers via opt-in Kubernetes-managed services, with data replicated across multiple nodes (typically 3–5) to enhance resilience. Storage operations are funded by the L2 treasury (derived from protocol fees), with metadata and consensus verifications (e.g., Merkle root hashes) persisted in Postgres databases and referenced on-chain to maintain agreement and integrity. To prevent indefinite repository growth and manage storage efficiency, a garbage collection mechanism is implemented. Data types such as logs, metrics, and benchmark results from random watcher checks are compressed and stored in object storage for approximately one year before automatic deletion. Persistent storage backups (e.g., database snapshots and state files) are rotated monthly, with older backups purged after this retention period. This selective data lifecycle management ensures availability of essential historical metrics and audits without accumulating redundant or unnecessary data, supporting a sustainable off-chain storage approach. ## 10.3 Trade-Offs/Security Hybrid costs blend on-chain gas (for essentials) with off-chain pinning, yielding enormous savings compared to full on-chain data storage. Security relies on checksums and pinning (IPFS/provider redundancy against failures). # **Section 11: Known Limitations, and Incentive Mitigation** No system without constraints. and while LingProtocol's design, innovative. acknowledges inherent limitations in decentralized compute. This section enumerates key limitations with empirical grounding, and articulates how antagonistic incentives mitigate these issues. Extensions outline pathways for evolution, ensuring LNQ's adaptability in the DePIN landscape. ## 11.1 Limitations Watcher gaps represent a core limitation: as probabilistic monitors (uptime/spot benchmarks), they do not achieve full verifiability, leaving room for undetected edge-case failures in complex tasks, akin to oracle dilemmas in DeFi where partial checks suffice but risk incompleteness. Volatility persists despite hedges, as token prices can fluctuate 30-60% in market downturns, impacting budgeting even with mitigations. Cold-start problems hinder initial adoption where low network effects lead to user churn in early DePINs. ## 11.2 Incentive Mitigation Bounds ensure economic security: stake requirements exceed rewards/exploits rendering attacks uneconomical (Filecoin parallels show similar thresholds deter majority of rational threats)[17] antagonistic design (slashes/reputation) overcomes non-verifiability by raising deviation costs above benefits. ### 11.3 Extensions Zk hybrids could augment watchers for selective full proofs, reducing probabilistic gaps; LinqChain offers native scaling as a future hub for integrated services. ## Section 12: Arbitrum Ecosystem Integrations and Risks Layer-2 (L2) solutions like Arbitrum are pivotal for scaling blockchain applications, addressing Ethereum's throughput limitations
while inheriting its security. In DePIN contexts, L2 integrations enable high-volume transactions with reduced costs, but introduce trade-offs in decentralization and risk exposure. LinqProtocol's Arbitrum focus leverages optimistic rollups for efficient compute leasing, emphasizing low-friction ties to the Ethereum base layer. This section explores Arbitrum-specific integrations and risks/benefits through value flow models, with future LingChain as a potential extension for native scaling. ## 12.1 Arbitrum-Specific Integrations Arbitrum's optimistic rollup architecture provides scaling benefits by batching transactions off-chain and posting summaries to Ethereum, reducing gas fees by 10-100x compared to L1[12]. For LinqProtocol, this enables low-cost escrows and disputes, with throughput supporting ~640 to 6000 transactions per second depending on complexity of transactions,[18] far exceeding Ethereum's theoretical limit of 140TPS[19] (17.2TPS at time of writing),[20] as demonstrated in ZK rollup evaluations adaptable to optimistic models. Ties to the ETH base layer ensure settlement finality, with fraud proofs allowing challenges to invalid states, inheriting Ethereum's economic security for DePIN resilience. ### 12.2 Risks and Benefits Sequencer risks include centralization, enabling censorship or front-running, as sequencers (often single entities) control transaction ordering; analyses bound these via incentives and bonds, but highlight liveness threats in delayed disputes. Fraud proofs mitigate invalid states but depend on honest challengers, with dynamic periods optimizing detection as in security frameworks. Benefits outweigh risks for low-friction hubs. In the future the option exists for LinqChain to extend as a native layer for seamless scaling. ## References/Bibliography - [1] World Economic Forum & Capgemini. (2025, June 3). Technology Convergence Report 2025. World Economic Forum. "Amidst the burgeoning DePIN sector, valued at over US \$50 billion in market capitalization as of 2024 and projected to reach US \$3.5 trillion by 2028." Retrieved from https://reports.weforum.org/docs/WEF_Technology-Convergence Report 2025.pdf - [2] Akash Network, "The Rise of Decentralized Compute," Akash Network Blog, published circa early 2024. Claim: "On Akash, prices for cloud computing services are up to 85% lower than their centralized counterparts." Retrieved from http://akash.network/blog/the-rise-of-decentralized-compute/ - [3] **Amazon Web Services**, "On-Demand Pricing T2/T3/T4g Unlimited Mode CPU Credit Rates," *Amazon EC2 Pricing*, 2025. Key detail: "For T2 and T3 instances in Unlimited mode, CPU Credits are charged at: \$0.05 per vCPU-Hour for Linux, RHEL and SLES, and \$0.096 per vCPU-Hour for Windows and Windows with SQL Web." Retrieved from https://aws.amazon.com/ec2/pricing/on-demand/ [4] **Protocol Labs, Filecoin Project**, "Engineering Filecoin's Economy," *Filecoin Technical Report*, August 27 2020. Key statement: "In general, markets balance supply and demand... In the case of Filecoin, if you have extra storage and... those seeking data storage may be willing to pay... Aligning these two... results in a deal (market clearing)." Retrieved from https://filecoin.io/2020-engineering-filecoins-economy-en.pdf - [5] Shelven Zhou (Phala Network), "Performance Benchmark Results: SP1 zkVM on TEE H200 GPUs Hits <20% Overhead," Phala Network Blog, March 21 2025. Key claim: "The TEE overhead primarily comes from memory encryption ... with overall overhead less than 20%". Retrieved from https://phala.network/posts/performance-benchmark-results - [6] Gate, "Render Deep Dive: Tokenomics, Adoption, Solana Move & Price Outlook," published July 24 2025. Key claim: "The community passed RNP-001... shifting RENDER from a fixed supply to a managed emissions system... allocated a 20% inflation pool... ~644 M max supply (up from 536 M). About 9.13 million RNDR tokens are being minted in the first year of BME as rewards." Retrieved from https://www.gate.com/crypto-wiki/article/render-deep-dive-tokenomics-adoption-solana-move-price-outlook - [7] M. Wang and Q. Wu, "Practical and Fast Intensive Validation on Blockchain," SSRN, 2023. Key point: "When the overhead becomes increasingly high, rational nodes choose to skip or refuse validation, which leads to the Verifier's Dilemma." Retrieved from https://papers.ssrn.com/sol3/Delivery.cfm/eb9eefb6 -ad76-403d-93e6-7151a28f182b-MECA.pdf?abstra ctid=4601578 - [8] Eric Budish, "The Economic Limits of Bitcoin and the Blockchain," Working Paper (University of Chicago / NBER), June 2022. Key statement: "A necessary condition for no player to have a profitable attack is $\mathbf{p} \geq \mathbf{V}$ _attack," Retrieved from https://ericbudish.org/wp-content/uploads/2022/06/ Economic-Limits-of-Bitcoin-and-Anonymous-Dec entralized-Trust-on-the-Blockchain.pdf [9] Sreeram Kannan & Soubhik Deb (a16z Crypto), "The Cryptoeconomics of Slashing," a16z Crypto, January 25 2023. Key insight: "Comparing a lower-bound on the minimum cost for any adversary to mount an attack (cost-of-corruption) against an upper-bound on the maximum profit ... indicates when it is economically profitable to attack the protocol. ... Slashing can increase the cost-of-corruption, reducing or eliminating the total profit." Retrieved from: https://a16zcrypto.com/posts/article/the-cryptoecon omics-of-slashing/ [10] Kleros Core Team, "Kleros: A Decentralized Justice Protocol for the Internet," Kleros Whitepaper, v1.0 (June 2018). Key insight: "Tokens are redistributed from jurors who voted incoherently to jurors who voted coherently. ... Thomas Schelling ... described 'focal point(s) for each person's expectation of what the other expects him to expect...' We expect agents to vote the true answer because they expect others to vote the true answer ..." Retrieved from: https://kleros.jo/whitepaper.pdf [11] Wikipedia, "Proportional—integral—derivative controller.", Key detail: "The proportional (P) component responds to the current error value by producing an output that is directly proportional to the magnitude of the error. … The integral (I) component … considers the cumulative sum of past errors to address any residual steady-state errors. … The derivative (D) component predicts future error by assessing the rate of change of the error, which helps to mitigate overshoot and enhance system stability." Retrieved from: https://en.wikipedia.org/wiki/Proportional%E2%80%93integral%E2%80%93derivative_controlle - [12] Jesse Pollak (Coinbase Engineering), "Supporting EIP-4844: Reducing Fees for Ethereum Layer 2 Rollups," Coinbase Blog, October 6, 2022. Key insight: "Enter EIP-4844: an upgrade to the Ethereum network that will reduce the cost of layer 2 rollups by 10-100x ... With this change in place, we expect fees on layer 2 rollups to decrease by 10-100x." Retrieved from: https://www.coinbase.com/en-gb/blog/supporting-eip-4844-reducing-fees-for-ethereum-layer-2-rollups - [13] Y. Sun, K. Li, W. Shi, and F. Yang, "Blockchain-Based Crowdsensing: A Survey from a System Perspective," arXiv preprint arXiv:2309.12330, Sep. 2023. Available: https://arxiv.org/abs/2309.12330 - [14] M. T. C. Chiu, S. Mahajan, M. C. Ballandies, and U. V. Kalabić, "DePIN: A Framework for Token-Incentivized Participatory Sensing," arXiv preprint arXiv:2405.16495, May 26, 2024. Available: https://arxiv.org/abs/2405.16495 - [15] C. Lesaege, N. Ast and S. Badreddin, Kleros, Short and Long Whitepaper Decentralized Justice Protocol, Kleros, Version 2.0, Nov. 2020. Available: https://kleros.io/whitepaper_long_en.pdf - [16] A. Liu, J. Chen, K. He, R. Du, J. Xu, C. Wu, Y. Feng, T. Li, and J. Ma, "DynaShard: Secure and Adaptive Blockchain Sharding Protocol with Hybrid Consensus and Dynamic Shard Management," arXiv preprint arXiv:2411.06895, Nov. 2024. Available: https://arxiv.org/abs/2411.06895 - [17] **Protocol Labs (Juan Benet et al.),** Filecoin: A Decentralized Storage Network, July 19, 2017. Key detail: "Storage Miners pledge their storage to the network by depositing collateral ... If some proofs of storage fail, a proportional amount of collateral is lost" Retrieved from: https://filecoin.jo/filecoin.pdf - [18] Offchain Labs, Arbitrum Chain Launch FAQ & Troubleshooting: Building the Arbitrum Chain, "For LinqProtocol, this enables low-cost escrows and disputes, with throughput supporting ~640 to 6000 transactions per second depending on complexity of transactions." Retrieved from: https://docs.arbitrum.io/launch-arbitrum-chain/faq-troubleshooting/troubleshooting-building-arbitrum-chain - [19] **Ethereum, Wikipedia,** The Free Encyclopedia, "As of March 2025, the maximum theoretical throughput for Ethereum is 142 TPS (given its current 36M gas limit, 12s blocks, and 21k gas cost for ETH transfers)." accessed July 24, 2025. Retrieved from: https://en.wikipedia.org/wiki/Ethereum - [20] **Etherscan**, Ethereum (ETH) Blockchain Explorer, "Transactions ... 2,905.01 M (17.3 TPS)", accessed July 24, 2025. Available: https://etherscan.io/ - [21] **Protocol Labs**, Filecoin Project. (2020, August 27). Engineering Filecoin's Economy (Technical Report). Key point: "high collateral creates barriers to miners joining the network," Retrieved from: https://filecoin.io/2020-engineering-filecoins-economy-en.pdf ## **Appendix** ## **Glossary of Terms** This glossary defines key terms used throughout the litepaper, providing clarity on LinqProtocol's cryptoeconomic concepts and mechanisms. - AUE (Adaptive Unlock Emissions): A mechanism simulating controlled minting for LNQ's upfront 1 billion supply, unlocking tokens from locked pools based on network metrics like active leases, job volume, and staked wLNQ, with aggressive relocks for small networks to bound inflation. - DePIN (Decentralized Physical Infrastructure Network): A blockchain-based network that incentivizes decentralized provision of physical resources, such as compute power in LinqProtocol. - Escrow: On-chain locked funds (in LNQ or hedged equivalents) deposited by requestors for leases, released upon completion or refunded with penalties on cancellation. - GMV (Gross Marketplace Value): The total value of jobs and leases processed in the network, denominated in LNQ equivalents, used to bound inflation, deflation, and emissions. - HWP (Hedge Weighted Pricing): A pricing model for leases, calculated as a user-chosen weighted average between LNQ and USDC prices, with higher USDC weighting increasing protocol take rates via a governance-adjustable curve. - Insurance Buffer: A fee-funded reserve that covers losses from hedges (e.g., LNQ - price drops during liquidations), ensuring staking pool wholeness. - Lease: A fixed-term rental of compute resources (e.g., 30 days at a set LNQ rate), requiring full up-front escrow deposits, renewable with another full-term deposit, and tied to hedges for rate stability. - LinqChain: A potential future native hub for LinqProtocol, enabling expanded services with reduced friction, though deprioritized in favor of ETH/Arbitrum focus. - LNQ: The native utility token of LinqProtocol, serving multi-role functions including exchange, staking, and governance. - Paramhub: An initial centralized module for managing adjustable parameters, transitioning to DAO control over time. - ProviderRegistry: An on-chain database tracking providers' reputation scores, staking details, and eligibility, updated via disputes, slashes, and benchmarks. - Reputation Score: A numerical, non-decaying metric for providers, increasing on successful jobs and decreasing on failures, benchmarks, or uptime lapses, used to offset staking requirements with bounded multipliers. - Semi-Verifiability: Probabilistic validation of compute tasks via watcher nodes' uptime checks and spot benchmarks, rather than full cryptographic proofs, balancing efficiency and trust. - Staking Pool: A collective fund where stakers earn yields from fees, slashes, failed governance, and penalties, while absorbing hedge risks to maintain ecosystem stability. - veLNQ (Vote-Escrowed LNQ): Time-locked staked LNQ granting amplified voting power in governance pools, used for proposals, disputes, and juror qualifications. - Watcher Nodes: Nodes performing uptime monitoring and spot benchmarking; short-term centralized/elected, long-term opt-in by providers via Kubernetes, funded by L2 treasury for network verification. - wLNQ (Wrapped LNQ): A bridged version of LNQ on Arbitrum L2, used in staking metrics for AUE calculations. ## Paramhub Adjustable Parameters The Paramhub initially manages key tunable parameters to ensure network flexibility, with values set conservatively at launch and transitioned to DAO governance. Below is a non-exhaustive list of adjustable parameters, including initial defaults (hypothetical based on simulations) and rationale: - AUE Factors (PID Coefficients): Proportional (P=0.5), Integral (I=0.1), Derivative (D=0.2) for emissions control; adjustable to fine-tune inflation response to GMV/leases/staking deviations. - **Burn Gamma**: 0.25 (25% of fees/GMV burned); tunable to modulate deflationary pressure, e.g., increase to 0.3 for scarcity in high-growth phases. - HWP Curve (Take Rate Escalation): Quadratic coefficient k=0.1 for USDC weighting penalties; gov-adjustable to balance enterprise adoption and revenue. - Staking Mins (Collateral Floors): Provider base = 100 LNQ, juror pool entry = 500 LNQ; modifiable to reflect risk levels or prevent under-collateralization. - Slash Fraction: 0.2-0.5 for providers/jurors; adjustable per tier (e.g., minority vote slashes at 0.1) to calibrate antagonism. - Insurance Buffer Allocation: 0.05-0.1 (5-10% of fees); tunable to hedge coverage based on volatility simulations. - Reputation Multiplier Bounds: Min 0.5x, Max 2x offsets; gov-set to bound exploits while rewarding high scores. - Lease Penalty Rate: 0.05-0.1 (5-10% on cancellations); adjustable to deter abuse without stifling usage. - Juror Quorum Threshold: 10% veLNQ participation; modifiable for dispute efficiency. - Developer Grant Caps: Limited to 10% of AUE-derived treasury inflation per cycle; tunable to prioritize ecosystem growth. - Proposal Bond Size: B 1 000 LNQ (baseline). Capital the proposer must lock - when submitting a protocol vote; at risk if the motion fails. - Proposal Fee Fraction: $f 0.05 \times B$. Non-refundable slice of the bond that funds the insurance buffer and deters spam. - Minority Slash Rate: $\sigma_m 0.10$. Portion of each minority voter's stake burned and redistributed to the majority when a proposal passed. - **Proposer Slash Rate:** $\sigma_p 1.00$. Fraction of the proposer's bond confiscated when a proposal fails (full loss by default). - Proposer Premium: ρ 0.02. Interest multiplier on the refunded bond when the proposal passes; paid from slashed minority stakes. - **Dispute Council Size:** The size of the council formed from elected jurors to vote on Tier 3 dispute resolution. (eg. 4, 6 or 8) - **Dispute Minority Slash Rate**: The portion of a stake that is slashed in the case of a Tier 2 minority.